
CROSSTALK The Journal of Defense Software Engineering 3December 1998

Requirements Management

It has been known since as early as the 1950s that addressing requirements issues improves the chance of
systems development success. In fact, whole software development standards (such as MIL-STD-2167,
MIL-STD-2167A, MIL-STD-498, and IEEE/EIA 12207) were designed to enforce this behavior for
software-intensive systems. Relatively recently (sidebar) a new field of study, requirements engineering,
has begun to systematically and scientifically address barriers to the successful use of requirements in
systems development. Since 1992, the Software Technology Support Center (STSC) has been helping
organizations adopt new technologies. This article defines requirements engineering (RE) from the
viewpoint of technology adoption, discusses which RE technologies are most critical to mission success
and why and which are most difficult to adopt, and outlines successful adoption approaches.

Experiences in the Adoption of Requirements
Engineering Technologies

Jim Van Buren and David A. Cook
Software Technology Support Center

Requirements engineering as a
field addresses requirements
 issues in a holistic manner.

Understanding the interrelationships
between the various requirements ac-
tivities and how they support each
other is as important as understanding
the technical details of any one of the
individual activities. Contrast this to
the 1970s and 1980s, when the soft-
ware engineering community focused
essentially only on requirements analy-
sis, or the early 1990s, when require-
ments management was the fad. This
holistic approach is the great require-
ments insight of the 1990s. The under-
standing of requirements activities from
this view helps engineers build and
follow lifecycle models that account for
their project’s business goals, the at-
tributes of their requirements, and the
strengths and weaknesses of their re-
quirements technologies.

Challenging Old Assumptions
One must challenge the assumption that
a requirements specification is equivalent
to a development contract. For some
projects, blind adherence to this assump-
tion makes project success much more
difficult. Once this assumption is chal-
lenged on a project basis, this drives
what requirements are needed and for
what they are needed. Once it is recog-
nized that the project’s goals (such as
time to market or long-term maintain-
ability) and attributes (such as require-
ments volatility) should drive its lifecycle

development and requirements process,
it is fairly straightforward to build or
tailor, with appropriate emphasis on the
requirements specification, a require-
ments engineering process. This is over-
whelmingly the number one require-
ments engineering technology adoption
lesson learned (and the second great
requirements insight of the 1990s).

Today’s requirements research [1] is
focused on issues that come to light
when the “requirements are equivalent
to development contract” idea is dis-
carded. Research concerns include
• How are requirements prioritized?

Requirements prioritization be-
comes critical when fixed develop-

ment dates or fast development
(time-to-market) considerations
drive the development rather than
the need to meet all requirements.

• How does a project cope with in-
complete requirements?

• How can requirements engineering
support the commercial develop-
ment paradigm (where feature sets,
product sizing, and market window
are the focus rather than functional
requirements)?

• What is the interdependence of
requirements and design (for ex-
ample, a strong interdependence is
necessary when building commer-
cial-off-the-shelf-based systems)?

Papers as early as 1956 have discussed the importance of requirements
definition in software development, but it was not until 1976, at the Interna-
tional Conference on Software Engineering, that requirements engineering was
recognized as a subdiscipline of software engineering. In fact, at the 1968-69
NATO software engineering workshops (where the term “software engineer-
ing” was first coined), software engineering was explicitly decomposed into
only design, code, and test activities [2].

The first time we noticed the term “requirements engineering” was in con-
junction with the 1993 International Symposium on Requirements Engineer-
ing (RE ’93), the first conference devoted entirely to requirements topics. Be-
fore 1993, it seemed that requirements research was stovepiped into areas such
as “requirements management” or “requirements analysis.” Since 1993, the
term “requirements engineering” and its accompanying thesis of holistically
addressing all the requirements activities has become widespread. In addition
to the RE series of conferences [3], the IEEE’s International Conference on
Requirements Engineering [4] meets every other year. The IEEE has also pub-
lished a seminal collection of RE papers [5].

Requirements Engineering Background

4 CROSSTALK The Journal of Defense Software Engineering December 1998

In June 1994, the Federal Aviation Administration (FAA) canceled its 10-
year effort to modernize the nation’s air control system. About $1.3 billion was
written off [6]. In 10 years, the requirements elicitation phase had never come
to closure. A requirements specification with a height that could be measured
in yards was produced, but it was fundamentally incomplete. This is the most
expensive development failure due to a requirements failure of which we are
aware. One can argue that there were many other problems with the program,
but it was during the requirements process that the program failed.

Tom DeMarco produced a brilliant analysis of what went wrong [7]. He
knew he was on the right track when he could not find a keyboard mentioned
in the specification. This led to the observation that the customer, the FAA,
was unable to specify if the system was to be centralized (Washington office’s
desire) or decentralized (controllers’ and regional operating centers’ desire).
DeMarco has since lectured extensively that internal customer conflicts like
this must be resolved before a specification can be completed and that conflict
resolution is an overlooked arrow in a requirements engineer’s quiver.

Requirements elicitation can help identify internal customer conflict. But
the customer—not the requirements engineer—must resolve conflicts or the
system being built is doomed to fail.

Elements of Requirements
Engineering
Even if one breaks the link between
requirements specification and develop-
ment contract, this does not alter the
need to perform requirements activities.
They are merely performed with a dif-
ferent flavoring of objectives. Individual
requirements technologies are still best
viewed from the perspective of the
requirements objectives they address.
The caveat is that they must support
the chosen overall requirements engi-
neering process.

We divide requirements engineering
into the categories of elicitation, analy-
sis, management, validation and verifi-
cation, and documentation. This tax-
onomy helps one understand both the
requirements problems and the require-
ments technology adoption issues that
face our clients. Like the biological
taxonomy, ours is intended to be a
living entity, subject to slow change. As
we have learned more about RE and as
RE matures as a field, our taxonomy
has, in fact, changed.

Requirements Elicitation
This field addresses issues that revolve
around getting customers to state ex-
actly what their requirements are. Pro-

grams large and small still fail to reach
closure on this step, in spite of adequate
effort. Other programs reach closure
but do not capture all the requirements.
This is perhaps the area of requirements
engineering with the highest incidence
of malpractice. Software engineers all
agree that requirements elicitation is
important, yet they uniformly spend
too little time performing it.

Requirements elicitation is the only
requirements engineering field without
a definitive technical solution, yet good
informal solutions exist. The lack of
technical solutions is expected because
the elicitation problem is human in
nature. The issue is that customers
often cannot state what the require-
ments are because they either do not
know what they want, are not ready to
fully define what they want, or are
unable, due to outside influences, to
decide what they want. The FAA
sidebar above outlines the classic ex-
ample of this last behavior.

The biggest elicitation failings
(missed requirements and inability to
state requirements) manifest themselves
as omissions or inconsistencies, which
may not become apparent until require-
ments analysis or systems acceptance
testing or even systems use (see Ariane

Flight 501 sidebar). Customers must
understand that incomplete, inconsis-
tent, or ambiguous requirements, at best,
cost a lot of money. At worst, they guar-
antee failure of the entire system. Spend-
ing additional time “fleshing out” re-
quirements always results in an overall
cost saving.

Elicitation Mechanisms
During requirements elicitation, one
must derive the system requirements
from domain experts—people familiar
with their domain but not necessarily
with building software systems. The
system developers must therefore be
conversant in the terms and limitations
of the domain, since the domain ex-
perts are probably not conversant in the
terms and limitations of software engi-
neering. To help overcome this poten-
tial communication barrier, elicitation
mechanisms are needed to add formal-
ity to what could otherwise be a “seat of
the pants” methodology.

Informal elicitation mechanisms
(such as prototyping, Joint Application
Development, Quality Function De-
ployment, Planguage [8], or good old
structured brainstorming) address moti-
vated and able customers who do not
know how to express their needs. We
conjecture that the root cause of com-
munication barriers is that the term
“requirements” is used differently by
different parties. The “requirement” that
is the output of the elicitation process
has a specific meaning to a software or
systems engineer. It is a real need of the
customer, it is testable, and it may be
prioritized. The requirement can also be
validated by the customer.

To an uninformed customer, a re-
quirement is often simply only a state-
ment of need. Elicitation mechanisms
help overcome this communications
barrier by helping the customer under-
stand and state needs in an objective
manner. There are interesting side effects
of these mechanisms. Customers develop
an ownership in the outcome of the
development effort and better under-
stand the problem that is being solved.
The customer’s needs and desires (nice-
to-haves) are explicitly separated. Devel-
opers establish a working relationship

Bad Requirements Process Leads to
Development Failure

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 5December 1998

with the customer and have an under-
standing of what the problem is and
where trade-offs can be made.

Despite the hype, formal methods
are not a complete solution. They are
not effective in involving the customer;
however, they are effective in gaining
greater understanding of constrained
parts of the problem domain. They can
assist an elicitation approach based on
informal techniques but cannot stand
on their own.

The adoption of elicitation tech-
nologies first requires the recognition
that elicitation can be a problem and
recognition that the term “requirement”
has different meanings to different
people. Once this occurs, the straight-
forward plan is to obtain training for
the organization’s elicitors in a variety
of elicitation techniques and interper-
sonal skills. Practicing elicitation on
real projects involves the use of a variety
of elicitation and validation techniques
that together increase the probability
that the customer has properly stated its
real requirements and that the develop-
ment organization understands them.
Organizations need to recognize that
elicitation is a skill learned through
practice. Practitioners generally are
proficient after training but not expert
until after several projects.

Requirements Analysis
Requirements analysis serves two pri-
mary purposes:
• It is used to make qualitative judg-

ments, i.e., consistency, feasibility,
about the systems requirements.

• It is a technical step in most systems
development lifecycles in which an
extremely high-level design of the
system is completed. This high-level
design consists of decomposing the
system into components and specify-
ing the component interfaces. The
critical output for most software
development requirements analysis
activities is the interface specification
for the decomposed components.
There are a number of well-under-

stood technical approaches to analysis,
i.e., OMT, Schlaer Mellor, Structured
Analysis, and UML. Most have good
commercial tool support. Organizations

do not have difficulty in finding experts,
in developing (through training,
mentoring, and experience) experts, or
in finding tools to support their analysis
efforts. Instead, technology problems
arise from both over- and underanalysis.
For example, well-funded programs tend
to overanalyze. They analyze everything
that can be analyzed without first deter-
mining what should be analyzed. Often,
detailed design occurs during this analy-
sis phase. Programs with cost constraints
suffer the opposite fate. They tend to
underanalyze, probably as a cost savings
measure.

Plenty of methods and tools support
analysis, and there are both tool-related
and training-related technology adop-
tion issues. Tool-related problems occur
when there are inconsistencies between a
tool’s implied development process and
the organization’s standard development
process. Tool vendors have come a long
way this decade in addressing this issue,
but it has not gone away. Tools become
“shelfware” if they impose their process
over the organization’s process, even if
the organization’s process is undefined
and ad hoc.

To adopt requirements analysis suc-
cessfully, pilot the analysis methods
manually, then identify what steps need
to be automated, then make a tool selec-
tion, then tailor the tools use, then use
the tool. Over time, the organization’s
process can gradually evolve.

We have observed that standard
training plans are often inadequate to
address new analysis methods. The
detailed training of how to apply a
method or a tool is necessary but not
sufficient. Education may also be
needed if the new method is radically
different—as object-oriented differs
from structured—from established
methods. In addition, mentoring on the
first pilot project is necessary for all but
a few individuals. When adopting new
analysis methods, always plan for edu-
cation, training, and mentoring.

Requirements Management
Requirements management addresses
aspects of controlling requirements enti-
ties. Requirements change during and
after development. The accepted require-

ments volatility metric is 1 percent of
requirements per month [10]. If it is
much less, one should ask oneself if the
system will be desirable to its intended
audience. If it is much more than 2
percent a month, development chaos is
all but assured.

Requirements management is the
requirements issue that most impacts
military software projects. In a 1993
report, Capers Jones found that 70
percent of all military software projects
are at programmatic risk because of
requirements volatility [10]. The root
causes (discussed below) of this volatil-
ity have not disappeared, so we believe
his finding is still true.

With one exception, requirements
volatility is uncontrollable. It will occur
as a byproduct of building a useful
product, and one’s development pro-
cesses needs to account for it. Software
systems do not exist in isolation. As a
new system is built, the system will
affect its environment, which will in
turn change its environmental require-
ments. This is inevitable and indicates
one is building the right system.

Most development efforts, and all
development efforts for which require-
ments management is important, take
time, sometimes on the order of years.
Over these periods, underlying tech-
nologies, user expectations, and even
laws change, to name just a few of the
many possible external interfaces. If one
is not getting requirements change
requests on large projects, one needs to
ask why. The one source of volatility
that can be controlled is the quality of
the initial requirements specification.
Good elicitation techniques can limit
rework as a cause of volatility.

Requirements Management
Technologies
Fortunately, the technologies needed to
address the requirements volatility issue
are relatively simple. The organization
needs a defined interface mechanism
with its customer by which require-
ments are changed, a mechanism (usu-
ally a configuration management sys-
tem or an RM tool) capable of defining
the current requirements baseline, and a
development approach, i.e., incremen-

Experiences in the Adoption of Requirements Engineering Technologies

6 CROSSTALK The Journal of Defense Software Engineering December 1998

tal lifecycle, that supports the antici-
pated requirements volatility. The pri-
mary adoption issues that must be
addressed are
• Building senior management recog-

nition that this defined mechanism
is necessary.

• Having the discipline to always
follow this change mechanism.
The old adage that “the customer is

always right” is not an absolute. When
customers ask for a requirements change,
they must be told the impacts of that
change, usually in terms of other prior
commitments, and then be allowed to
make the final decision. The software
development organization must never
unilaterally add a requirement.

Tools and Adoption Technologies
Effective management usually implies
both exerting control over and knowing
the status of requirements. There is a
whole class of RM tools (such as Requi-
site Pro, DOORS, RTM, and Caliber-
RM) that automate the tracking of
requirements across lifecycle phases.
They also support many of the require-
ments baselining and requirements
documentation issues. They are particu-
larly useful for programs that wish to
follow a requirements-centric develop-
ment approach. Technology adoption
issues associated with these tools are the
standard issues for tools. Understand
what the tool will be used for, find a
tool that meets those needs, then build

a plan for adopting the tool, being
careful that the tool not be used for
purposes beyond identified needs.

The Software Capability Maturity
Model (SW-CMM) (and to some extent
the Systems Engineering and the Soft-
ware Acquisition CMMs) includes re-
quirements management as a Level 2 key
process area (KPA). Within this context,
the requirements management KPA only
applies to managing requirements
change. Other requirements manage-
ment tracking and status activities could
apply as part of the Level 3 SW-CMM
KPA, Software Product Engineering,
depending on the organization’s develop-
ment approach. When implementing a
CMM-based technology change pro-

Requirements Management

On June 4, 1996, the maiden flight of Europe’s Ariane 5
rocket ended in catastrophic failure with a complete destruc-
tion of the rocket and its payload [9]. The cause was a soft-
ware error, perhaps the most expensive software error on
record. The root cause of this error was a breakdown in the
requirements process—not in the software design or coding
processes—that was not caught by the developmental verifi-
cation and validation process. Within the requirements pro-
cess, there were problems with elicitation, analysis, and veri-
fication and validation.

At liftoff, plus 30 seconds, an operand exception was
generated in the Inertial Reference System (SRI) computer
during a conversion of a 64-bit floating entity into a 16-bit
signed integer. This caused the SRI to crash and output a
diagnostic bit pattern. The redundant backup SRI had also
crashed 72 milliseconds earlier for the same reason. Ariane
5’s on-board computer interpreted the SRI’s diagnostic bit
pattern as valid commands and ordered full nozzle deflec-
tions of both the solid boosters and the main engines. The
rocket was then destined to break up.

The official Inquiry Board found that the primary causes
of the crash were “… specification and design errors in the
software …” and “… reviews and tests … did not include
adequate analysis and testing.” The software requirements
were incomplete and neither the requirements analysis activi-
ties or the requirements verification and validation process
discovered this omission. They also found fault in exception
handing requirements, which basically were to log the error
and terminate. This arose from a faulty belief that random
hardware failures were the only reason for an exception and
that systematic software errors would never occur (systems
analysis failure).

The software and software requirements were essentially
reused from Ariane 4. An explicit decision had been made to
not include the Ariane 5 normal liftoff trajectory as part of
the software requirements (requirement elicitation failure).
When computing the alignment horizontal bias for the
Ariane 5 trajectory, the operand exception will always occur
at about liftoff, plus 30 seconds. The operand exception will
never occur for the Ariane 4 trajectory in the first 43 seconds
of flight. Had the trajectory been included as a requirement,
the official Inquiry Board believed that the developer’s analy-
sis and testing process would have observed this exception.

Exception handing had been turned off because of a
processor performance requirement (maximum 80 percent
processor utilization). The Ariane 4 analysis indicated that
horizontal bias would remain within the range of a 16-bit
signed integer with the Ariane 4 trajectory. This justification
analysis was not easily available to the Ariane 5 development
team (requirements process failure).

The reuse of the Ariane 4 software requirements was also
flawed. Ariane 4’s requirement to continue computing align-
ment (which includes the horizontal bias) for 50 seconds
after entering flight mode (liftoff is seven seconds into flight
mode) to support a late hold is not needed for Ariane 5. The
original requirement may even be a bit flawed, because the
alignment calculation is physically meaningless after liftoff
(systems analysis failure).

The Inquiry Board also took issue with the verification
and validation processes. Its primary finding was that these
processes did not identify the defect and were thus a “con-
tributory factor in the failure.” The explanation given for not
testing or analyzing the Ariane 5 trajectory was that it was
not a part of the requirements specification (requirements
verification and validation failure).

Ariane Flight 501
Bad Requirements Lead to Systems Failure

CROSSTALK The Journal of Defense Software Engineering 7December 1998

gram, remember that managing the
customer interface comes first. A second
step might be tracking the status of
requirements across the development
lifecycle and using that information to
manage the development.

Requirements Validation and
Verification
The requirements verification and vali-
dation (V&V) portion of RE addresses
how quality is built into the RE pro-
cess. Validation (“Are we building the
right system?”) addresses the issue of
building the system the customer
wants. This quality step should identify
missing and extra requirements. Valida-
tion activities always occur as part of
system acceptance testing and also typi-
cally, but not always, as part of the
elicitation process. There are several
orders of magnitude cost difference in
requirements misunderstandings that
are identified as part of elicitation,
before development resources have been
expended, vs. those that are found dur-
ing system acceptance testing. This
points out the critical need for the elici-
tation process to include validation.

Customer and domain expert input
are necessary for validation. In fact,
attempting to validate a system without
customer input is equivalent, in the
words of one of our customers, to de-
signing a “self-licking ice cream cone.”
The necessity of user input is another
reason formal methods are insufficient
for building systems—the customer
usually cannot understand and does not
want to learn how to validate using
formal mechanisms. Mechanisms that a
customer can easily understand (and
hence easily validate) are almost always
based on clear language and easily un-
derstandable pictures—input the cus-
tomer can already comprehend. If the
customer has to learn a new notation or
method to validate a system, a new
quality issue is introduced to the valida-
tion process: lack of a clear understand-
ing of the method. The focus needs to
be on the solution, not on the method.

Verification (“Did we build the sys-
tem right?”) addresses the issue of meet-
ing all the requirements. Typically, the
verification method and sometimes the

Adopting requirements documenta-
tion technology is fairly straightfor-
ward. One should choose a standard
that fits the lifecycle requirements of
the system, tailor that standard to fit
the system’s specific requirements, then
apply it. If one intends to use an RM or
a requirements analysis tool to auto-
mate a portion of the document genera-
tion, one should pilot the documenta-
tion process. Experience has always
shown this to be much more difficult
than originally envisioned.

Technology Adoption
A technology adoption process will
increase the probability of a successful
technology change. At the STSC, our
technology adoption process is based
on the IDEAL Model [11] (Figure 1).
We also use two other important adop-
tion principles:
• Small improvement steps.
• Address needs at all levels of the

organization.
We discuss the IDEAL Model here

not necessarily because it is the best
technology adoption model (although
we believe it is), but to demonstrate the
importance of picking an adoption
model, basing one’s adoption process
on that model, and improving one’s
model and process over time. The fol-
lowing is a synopsis of the five steps in
the IDEAL Model:
• Initiate – Obtain and maintain

sponsorship.
• Diagnose – Assess current practice.
• Establish – Produce plan to address

shortcomings.
• Act – Pilot and use the

technology(ies).
• Learn – Collect lessons learned,

next steps (such as rollout), cycle
back to diagnose.
Our RE field experience indicates

that organizations planning RE tech-
nology purchases or process changes
generally do not follow a process or a
model for technology adoption. If they
are not planning a purchase, they usu-
ally do not even realize that what they
are doing is technology adoption. This
differs from organizations interested in
process improvement, which tend to

verification level is included in the re-
quirements specification. Verification
methods include demonstration (observ-
able functional requirements), analysis
(collected and processed data), simula-
tion (use of a special tool or environ-
ment to simulate the real world), and
inspection (examination of source code
and documentation). Verification levels
depend on the intended development
environment. They specify the develop-
ment lifecycle stage at which the verifica-
tion will be performed, i.e., unit test,
integration test, system installation, or
flight test.

From a technology adoption per-
spective, requirements V&V is a ques-
tion of designing a development life-
cycle that meets the needs of the
product. Emphasis needs to be placed
on validation in the elicitation phase. It
should be considered software engineer-
ing malpractice if requirements V&V is
not also included during design and
coding phases. Validation and verifica-
tion must be performed after the sys-
tem has been built.

Requirements Documentation
There are a number of potential stan-
dards for structuring requirements
specifications. American National Stan-
dards Institute/Institute of Electrical
and Electronics Engineers-STD 830-
1993 specifically addresses require-
ments specifications. The lifecycle stan-
dards Electronic Industries Association
(EIA)/IEEE 12207 and the withdrawn
standards MIL-STD-2167A and MIL-
STD-498 specify another similar for-
mat. The basic contents of all these are
the same: They all include an overall
description, external interfaces, func-
tional requirements, performance re-
quirements, design constraints, and
quality attributes.

Another school of thought posits
that there should be a bare minimum of
requirements documentation. A con-
cept of operation document or a users
manual are all that are needed for a
requirements statement. This makes
sense for applications where time to
market is more important than long-
term maintainability.

Experiences in the Adoption of Requirements Engineering Technologies

8 CROSSTALK The Journal of Defense Software Engineering December 1998

Requirements Management

produce detailed technology adoption
plans based on models like IDEAL.

When a tool or a method is pur-
chased, the vendor is consulted regard-
ing its specific adoption recommenda-
tions. With one exception, an
SW-CMM Level 5 organization, we
have not seen any formal mechanisms
that use lessons learned from prior tech-
nology adoptions. Our advice is that
vendors’ recommendations become the
functional requirements for the adoption
plan and that the plan be driven by the
organization’s past adoption experiences.

Small Steps
To build adoption plans, two adoption
principles must be adhered to. First is
the principle of small steps. Many small
process improvement steps have a
greater chance of success than one giant
process improvement leap.

To build a requirements-centric
development process, one cannot jump
right to the final state. Instead, the first
step might be to get all one’s require-
ments changes under control. The sec-
ond step would be to pilot an RM tool
that reports the development status of
every requirement and produces re-
quirements documents. The final step
would be to use requirements status

information to manage one’s develop-
ment efforts.

Address All Organizational Levels
The second adoption principle is that
plans must address all levels of the orga-
nization: the individual, the project,
and the organization in its entirety. For
example, an adoption plan to meet the
objectives of the RM KPA of the SW-
CMM would involve all three levels in
different ways.

Senior management, representing the
organization, would need background
RM training (indoctrination) on why
controlling requirements is an important
issue. They will have to issue and enforce
an organizational policy. More impor-
tant, they may have to stand up to the
organization’s customers and tell them
that, unlike the old days, the customers
cannot change or add requirements in an
uncontrolled manner.

On the project level, a system, most
likely tools and processes, will be
needed to track requirements baselines.
Ultimately, individuals must have the
discipline to never allow requirements
to creep into the system outside of
standard channels.

In the prior example, the adoption
emphasis needs to be placed at the
organizational level. If that step suc-
ceeds, the others will generally follow.
But the level of emphasis differs de-
pending on the type of requirements
technology. For example, emphasis
should be placed on the individual
adoption issues when elicitation tech-
nologies are being adopted. Elicitation
is essentially an individual skill, border-
ing on art form.

Adoption Effort
Table 1 examines the technology adop-
tion issues for each of the requirements
technologies from the perspective of
various organizational levels. Although

Table 1. Requirements engineering technology adoption issues.

Figure 1. The IDEAL Model.

ygolonhceT leveLlanoitazinagrO

laudividnI tcejorP noitazinagrO

noitaticilE � gniniarT
� gnirotneM

� noitceleSeuqinhceT
� ygetartsV&VfogniroliaT

� margorPgniniarTtnetsisreP

sisylanA � noitacudE
� gniniarT
� gnirotneM

� noitceleSeuqinhceT
� ygetartsV&VfogniroliaT

� margorPgniniarTtnetsisreP

)lortnoc(tnemeganaM � wollofotenilpicsiD
ssecorpeht

� ssecorPderoliaT
�)yrassecenfi(noitpodAlooT

� yciloP
� ybtnemecrofneyciloP

noitazinagro � sevitucexes

)sutats(tnemeganaM � gniniarT � gnitoliPlooT � sdradnatSlanoitazinagrO

dnanoitadilaV
noitacifireV

� sweiver(gniniarT ,
snoitcepsni ,)sloottset

� hcaorppAderoliaT � tnemecrofnE

noitatnemucoD � gniniarT � hcaorppAderoliaT � sdradnatSlanoitazinagrO

CROSSTALK The Journal of Defense Software Engineering 9December 1998

all issues need to be addressed, those
that are bold italicized are the issues
critical to adoption success for each of
the technology areas.

Finally, there is the question of how
hard technologies are to adopt. Some
technologies require a lot of effort to
master. Analysis technologies are an
example of this. The elicitation tech-
nologies require a medium amount of
effort to become proficient but a lot to
master. The other requirements tech-
nologies all require relatively less
amount of effort to master.

Another view of the difficulty of
technology adoption is how difficult it
is to verify that the technology has been
adopted. Elicitation is extremely hard,
analysis is moderate, and the others are
easy. Table 2, summarizes the relative
difficulties of the various requirements
technologies. Note that the table only
captures relative differences between the
various RE technologies and only ad-
dresses adoption issues; it does not
address the relative difficulty of practic-
ing each of the requirements activities.

We have observed that organizations
usually succeed when adopting “easy”
technologies, even without outside assis-
tance. They usually fail when adopting
“hard” technologies, unless supported by
external consultants.

Summary
Requirements engineering is the sys-
tems development activity with the

highest return on investment payoff.
The cost savings that result from find-
ing errors during verification and vali-
dation of requirements can be as high
as 200-to-1 [12].

However, the requirements task is
inevitably always harder than it first
appears. If one were to presuppose that
the customers were motivated and able
to specify accurate and complete re-
quirements, that the requirements
would never change, and that there
were no cost or schedule constraints
placed on a development, there would
not be any requirements issues. Unfor-
tunately, none of these presuppositions
are true. RE is the technical field of
study that attempts to address and
balance these issues.

The requirements phase is the inter-
face between a customer’s needs and the
technical development process. The
skills needed to perform requirements
activities are a marriage of the people
skills necessary to interface with the
customer and the technical skills
needed to understand the development
process. At their heart, requirements
skills are human based. Tools and tech-
nologies can only support requirements
activities. When evaluating and adopt-
ing new RE technologies, focus on
those technologies and adoption issues
that support the human requirements
engineer. ◆

About the Authors
Jim Van Buren is on the
technical staff of
Charles Stark Draper
Laboratory, which he
joined in 1983, under
contract to the STSC.
He has supported the

STSC and the STSC’s customers since
1989 in requirements, design, object-
oriented technologies, and other tech-
nologies relating to the development of
software. He is an SEI-authorized Per-
sonal Software ProcessSM (PSP) instructor.
He currently serves as Draper’s technical
program manager at the STSC.

Software Technology Support Center
7278 Fourth Street
Hill AFB, UT 84056
Voice: 801-777-7085
Fax: 801-777-8069
E-mail: vanburej@software.hill.af.mil

David Cook is a princi-
pal member of the
technical staff, Charles
Stark Draper Labora-
tory, currently working
under contract to the
STSC. He has over 25

years experience in software development
and has lectured and published articles on
software engineering, requirements engi-
neering, Ada, and simulation. He has
been an associate professor of computer
science at the U.S. Air Force Academy,
deputy department head of the software
engineering department at the Air Force
Institute of Technology, and chairman of
the Ada Software Engineering Education
and Training Team. He has a doctorate in
computer science from Texas A&M Uni-
versity and is an SEI-authorized PSP
instructor.

Software Technology Support Center
7278 Fourth Street
Hill AFB, UT 84056
Voice: 801-775-3055
Fax: 801-777-8069
E-mail: cookd@software.hill.af.mil

References
1. Siddiqi, Jawed and M. Chandra

Shekaran, “Requirements Engineering:
The Emerging Wisdom,” IEEE Soft-
ware, March 1996, pp. 15-19.

2. Boehm, Barry, Proceedings of the 2nd
International Conference on Requirements
Engineering, 1996, p. 255.

Table 2. Relative difficulties of the various requirements technologies.

Experiences in the Adoption of Requirements Engineering Technologies

ygolonhceTER tpodAotderiuqeRtroffE tahTyfireVotderiuqeRtroffE
dekroWsaHnoitpodA

noitaticilE .noitacilppatneiciforprofetaredoM
.noitacilppatrepxerofdraH

.draH

sisylanA .draH .etaredoM

)lortnoC(tnemeganaM sitnemtimmocgnitteG(ysaE
).drahsemitemos

.ysaE

)sutatSgnikcarT(tnemeganaM .etaredoM .ysaE

noitatnemucoD .ysaE
sinoitatnemucodehtfi,etaredoM

.detarenegyllacitamotuaebot

.ysaE

noitadilaVdnanoitacifireV .ysaE .etaredoM

10 CROSSTALK The Journal of Defense Software Engineering December 1998

Call for Papers: The International Conference on
Practical Software Quality Techniques ’99

Dates and Locations: June 7-10, 1999, San Antonio,
Texas; Oct. 4-7, 1999, St. Paul, Minn.

Sponsor: The San Antonio Software Process Improve-
ment Network

Featuring: Watts Humphrey and James Bach
Topics of Interest: Inspections, Reviews, and Walk-

throughs, Testing, Software Process Assessment and
Improvement, Quality Management Issues, Measure-
ments and Benchmarking, ISO 9000 Certification,
Configuration Management and Version Control,
Change Tracking, Requirements Management, Year
2000 Process Quality Issues, and automated tools that
deal with any of these areas. Abstracts that deal with
other topics will also be considered. Presentations are
one hour and 15 minutes.

Abstract due date: Jan. 15, 1999
Send all submissions (MS Word or RTF format) via E-

mail to: Dr. Magdy S. Hanna
E-mail: mhanna@softdim.com
Internet: http://www.softdim.com.

NDSS ’99 Symposium
Dates: Feb. 3-5, 1999
Location: San Diego, Calif.
Topics: This sixth annual Network and Distributed Sys-

tem Security Symposium brings together researchers,
implementers, and users of network and distributed
system security technologies to discuss today’s impor-
tant security issues and challenges. The symposium
fosters the exchange of technical information and
encourages the Internet community to deploy avail-
able security technologies and develop new solutions
to unsolved problems.

Contact: Carla Rosenfeld
E-mail: carla@isoc.org
Internet: http://www.isoc.org/ndss99

WICSA1: First Working IFIP Conference on
Software Architecture

Dates: Feb. 22-24, 1999
Location: San Antonio, Texas
Sponsor: International Federation for Information Pro-

cessing (IFIP).
Topic: WICSA1 will provide a focused and dedicated

forum for the international software architecture
community to unify and coordinate their effort in
advancing the state of practice and research. An im-
portant goal of this working conference is to facilitate
information exchange between practicing software
architects and software architecture researchers. This
conference will serve as a kickoff event for a new IFIP
Technical Committee 2 working group on software
architecture and will shape the focus and tasks of the
working group for the initial period.

Contact: Paul Clements
E-Mail: pclement@sei.cmu.edu
Internet: http://www.bell-labs.com/usr/dep/prof/wicsa1

Third Symposium on Operating Systems Design
and Implementation (OSDI ’99)

Dates: Feb. 22-25, 1999
Location: New Orleans, La.
Topic: Continuing in the tradition of the OSDI sympo-

sium, the third OSDI will continue to focus on prac-
tical issues related to modern operating systems.
OSDI brings together professionals from academic
and industrial backgrounds and has become the per-
fect forum for issues concerning the design and
implementation of operating systems for modern
computing platforms such as workstations, parallel
architectures, mobile computers, and high-speed
networks.

Internet: http://www.usenix.org/events/osdi99

Coming Events

3. International Symposium on Require-
ments Engineering (RE) ’92, RE ’94,
and RE ’96.

4. International Conference on Require-
ments Engineering (ICRE), 1994,
1996, and 1998.

5. Thayer, R.H. and M. Dorfman, eds.,
System and Software Requirements Engi-
neering, 2nd ed., IEEE Computer Soci-
ety Press, Los Alamitos, Calif., 1996.

6. Barlas, Stephen, “FAA Shifts Focus to
Sealed-Back DSR,” IEEE Software,
March 1996, p. 110.

7. DeMarco, Tom, International Confer-
ence on Requirements Engineering,
Tutorial, March 1998.

8. Gilb, Tom, “Requirements-Driven Man-
agement: A Planning Language,”
CROSSTALK, Software Technology Support
Center, Hill Air Force Base, Utah, June
1997, p. 18. Language description is
available at http://www.stsc.hill.af.mil/
SWTesting/gilb.html.

9. “Ariane 5, Flight 501 Failure,” Report
by the Inquiry Board, July 19, 1996,
http://www.esrin.esa.it/htdocs/tidc/
Press/Press96/ariane5rep.html.

10. Jones, Capers, Assessment and Control of
Software Risks, Prentice-Hall, Englewood
Cliffs, N.J., 1994.

11. Gremba, Jennifer and Chuck Myers,
“The IDEAL Model: A Practical Guide
for Improvement,” Bridge, Software
Engineering Institute, Issue 3, 1997.
Also available at http://
www.sei.cmu.edu/ideal/
ideal.bridge.html.

12. Davis, A., Software Requirements, Ob-
jects, Functions, and States, Prentice-
Hall, Englewood Cliffs, N.J., 1993.

Requirements Management

